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A Simple Homotopy Method for Determining All 
Isolated Solutions to Polynomial Systems 

By Walter Zulehner 

Abstract. A new homotopy method for solving systems of polynomial equations is presented. 
The homotopy equation is extremely simple: It is linear with respect to the homotopy 
parameter and only one auxiliary parameter is needed to regularize the problem. Within some 
limits, an arbitrary starting problem can be chosen, as long as its solution set is known. No 
restrictions on the polynomial systems are made. A few numerical tests are reported which 
show the influence of the auxiliary parameter, resp. the starting problem, upon the computa- 
tional cost of the method. 

1. Introduction. In this paper we discuss the problem of finding all isolated 
solutions to a system of equations 

(1.1) P(z) = 0, 

where the components P. of P: C' -* C' (C denotes the complex plane) are 
polynomials in z = (zl,Z2, ... Z) of degree (degP1 =) d1 > 1 for j = 1, 2,..., n. It 
is well known that there are at most D = d d2 . dn isolated solutions to (1.1) 
(Bezout's Theorem). 

Several homotopy methods for solving this problem have been proposed. In these 
methods a simple system of polynomial equations 

(1.2) Q(z) = 0 

with known solution set is continuously deformed into the system (1.1) by some 
homotopy mapping H: Cn x [0,11 ]- C n, e.g., 

(1.3) H(z,t) = tP(z) +(1 - t)Q(z), t E [0,1], 

as the homotopy parameter t varies along the real line from 0 to 1. A solution to 
(1.1) is obtained by following a continuous solution path z(t), t E [0,1] (i.e., 
z(t) E Cn solves the system 

(1.4) H(z, t) = 0 

for each t E [0, 1]), starting at some solution to (1.2). Computationally efficient path 
following techniques often require regularity of the solution path, i.e., 

(1.5) det Hz (z (t), t) # 0 for t E [0, 1), 

where Hz denotes the Jacobian of H with respect to z. 
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The homotopy mapping proposed in this paper is given by (1.3) with 

Q(z) = aR(z), 

where a E C is a nonzero auxiliary parameter and 

(1.6) R(z) = 0 

is any polynomial system with 

(A) deg RJ = dj for j = 1, 2, ..., n and exactly D easily computa- 
ble distinct (simple) zeros. 

Typically, system (1.6) is obtained by splitting P, 

P(z) = R(z) + S(z), 

where R satisfies (A) and S is regarded as a perturbation. Alternatively, a universal 
choice for R would be 

(1.7) RJ(Z) =z J-1 for j =1,2,..., n. 

The introduction of an auxiliary parameter a E C is necessary to regularize the 
solution paths. A proper choice of a ensures that (1.5) is fulfilled. More precisely, it 
is shown that, for almost each a on the unit circle in C, the proposed homotopy 
method works, that means: A regular solution path starts at each solution to (1.6) 
and each isolated solution to (1.1) is endpoint of such a regular path at t = 1. The 
phrase "for almost each a E A" is an abbreviation of "for each a E A - E, where 
E is finite". Therefore, it is reasonable to assume that the homotopy method works 
for a randomly chosen a on the complex unit circle. 

The main features of the new method are its simplicity (only one auxiliary 
parameter), flexibility (with respect to the starting problem (1.6)), and universality 
(no restrictions on P). In previous papers, more auxiliary parameters were used. 
Under a mild condition on P the homotopy method introduced by Chow, Mallet- 
Paret and Yorke [3] works for n2 + n randomly chosen auxiliary parameters. These 
results were improved by Brunovsky and Meravy [2] who showed that a slightly 
modified homotopy method works for n2 auxiliary parameters out of some open and 
dense subset of Cn . Only 2n randomly chosen auxiliary parameters are required by 
Wright [18], where the solution set of (1.1) is assumed to be discrete, by Li [13] under 
the same assumption as used in [3], and by Morgan [15]. In a recent paper, Li and 
Sauer [14] showed that the 2n auxiliary parameters can be chosen from some open 
and dense subset of C2n. Garcia and Zangwill [6], [7], [8] proposed a homotopy 
method which works for almost each system (1.1) in the measure-theoretic sense. 
There, the coefficients of the polynomials PJ, j = 1,2,...,n, play the role of 
randomly chosen auxiliary parameters. In all above-mentioned papers the type of 
the starting problem was fixed. The present paper is strongly related to the work of 
Drexler [4], [5] and Zulehner [19], as far as the theoretical background is concerned. 
However, Drexler requires a discrete solution set of (1.1), and these three papers deal 
with homotopies of a different sort, using a possibly complex parameter t. 

Many different algorithms for numerically following the solution paths were 
studied; see, e.g., Garcia and Zangwill [6], [7], Kojima and Mizuno [10], Kojima, 
Nishino and Arima [11], Kuhn [12] for simplicial methods, which are based on 
piecewise linear approximation of H, and Drexler [4], [5], Garcia and Zangwill [8], 
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Wright [18] for continuation methods where path following is done by numerically 
integrating an exact differential equation. In this paper we adopt the second 
approach, using a standard predictor-corrector procedure. In order to deal with 
poles, which frequently occur for solution paths at t = 1, the differential equation 
was set up in C"+? (including a scaling condition) rather than in C'. This allows one 
to compute proper as well as improper isolated zeros of P. 

2. Setting Up the Problem in Projective n-Space. For theoretical reasons, the 
problem (1.1) is set up in projective n-space rather than in Cn. 

Notation. For any nonconstant polynomial, say F, in z = (zl, Z2 ..., Zn) E Cn of 
degree d, there is a homogeneous polynomial, denoted by the corresponding script 
letter, here Y, in z = (z0, z,., z z) Cnll of the same degree, uniquely de- 
termined by 

Y(z) =zgF 
1 

z) for zO . ? 

The original polynomial is recovered from Y by setting z0 = 1: 
F(z) =Y(1,z). 

Y is called the homogenization of F. 
With these notations, the homogenized version of (1.1) is written as 

(2.1) 9@(z) = 0, 

a system of n homogeneous equations in n + 1 variables. Obviously, if z solves 
(2.1), any scalar multiple pz, p E C, is also a solution to (2.1). Therefore, it is natural 
to identify points in Cn+1 which lie on the same straight line through the origin. This 
motivates the 

Definition (Projective n-space pn). pn is the collection of all one-dimensional 
complex subvectorspaces in Cn+l. 

Any solution z = (zl, Z2 ... I Zn) to (1.1) in Cn produces a solution to (2.1) in pn, 
namely the linear span of (1, zl, . . - Zn) in Cn+l. On the other hand, each solution to 
(2.1) in pn is either a straight line through the origin containing a point (1, zl,.. ., Zn), 
which corresponds to the (proper) zero (zl, z2,...I Zn) of P, or a straight line in 
Cn+1 lying in the hyperplane zo = 0. In the second case the solution in pn is called 
an improper zero of P. 

For analyzing the homogenized homotopy mapping X, we study the closely 
related mapping 

H(z, A) = AXog(z) + A1X(z) with X = (X0, 1) E C2, 
where C denotes the homogenization of R, see (1.6). Next we introduce the set 

X {(z, ) E Cn+1 X C2: H(z, X) = 0). 

Each solution (z, t) E Cn X [0, 1] to (1.4) corresponds to a point ((1, z), 
(t, a(l - t))) E Cn+1 x C2 in X. The set X C Cn+1 x C2 can also be viewed as a 
subset of pn X pl , since H is homogeneous in z E Cn+1 and in X E C2. In the next 
section the set X is analyzed. 

3. Properties of the set X C pn X P'. For simplicity we do not distinguish 
between an element of pn which is a straight line in C?1 and any nonzero point 
on this straight line. So 0 # z = (z0, zl,.., Zn) denotes a point in Cn+1 as well as 
the straight line in Cn+1 through z. 
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In order to introduce topological and differential-geometric concepts for projec- 
tive n-space, we now represent pn as a complex analytic manifold: Let Ui be the set 
of all one-dimensional subspaces of Cnl? not lying in the hyperplane zi = 0. 
Naturally, 

n 

pn = U 
l=O 

A one-dimensional subspace in Cn+l through (zO, zl,.., Zn) not lying in the 
hyperplane z, = 0 is uniquely determined by the point of intersection 

(zo/z, -.** Z-l/zi, 1, Zill/Z, -. *, zjnzi) with the hyperplane zi = 1, which is just a 
copy of C". Hence, the set U, c pn can be identified with Cn by the mapping 

Di UI cn with D(zo, z1,... zn) = (z* z, z, ) I I 

The system {(UL, D,): i = 0, 1, . .., n } is a set of charts covering pn by a union of 
n + 1 copies of C". Thus P" becomes a complex analytic manifold. 

Notation. Let pEp, SUCp. If pEt],, resp. U, n s 0, for some i= 
0, 1, . . ., n, the point Di( p) E Cn, resp. the set D,(Ui n S) C Cn, are called affine 
representations of p resp. S, briefly denoted by the corresponding primed letters p', 
resp. S'. In a natural way, this notation is extended to points and subsets of 
p' x Pl. 

Topological concepts can easily be introduced for pn, for example: 
Definition. Let S c Pn, p E S. The point p is an isolatedpoint of S if and only if 

it is an isolated point in some affine representation, i.e., p' E C" is isolated in 
S, C C n for the natural topology in C n. 

In a similar way, concepts from differential geometry are carried over to P" X Pl: 

Definition. Let (z, A) E X C pn X pl. X is smooth at (z, A) if and only if there is 
an affine representation (z', ') E X' C C n x C such that, within some neighbor- 
hood U, x U, of (z', '), the set X' coincides with the graph of some analytic 
mapping 9p: U, - UK. 

Strongly related to smoothness is the concept of regularity: 
Definition. Let (z, A) E X C pn X Pl. The point (z, A) is regular if and only if 

rank Hz(z, A) = n. 

A straightforward application of the Implicit Function Theorem to some affine 
representation gives 

LEMMA 1. Let (z, A) E XC pn X pl. If (z, A) is a regular point, then Xis smooth 
at (z, A). 

The proof is omitted. 
Next we study the fibers of XA with respect to X E pl 
Definition. XA = {z E pn: H(z, A) = 0) for X E Pl. 
Example. 

X(O1) = {z E pn: _q(z) = 0), 

X(1 = { z E P": '(z) = 0). 
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We have the important 

LEMMA 2. For almost each X E P1 (i.e., for each X E Pl - E, E is finite), in 
particular for X = (0, 1), the set XA consists of exactly D distinct points and (z, A) is 
regular for each z E XA. 

Proof. See appendix. 
Of special interest for the homotopy method is the limit of X. as X approaches 

(1,0): 
Definition. lim (1 o) XA is the set of all limit points of sequences {(Z(k), A(k))} 

with z(k) E X,A(O as X(k) approaches (1, 0). 

LEMMA 3. lim X - (1 0) XA consists of at most D points, including all isolated points of 

Proof. See appendix. 

4. The Solution Set of the Homotopy Equation. We now apply the results of the 
previous section to the homotopy equation 

,'(z, t) = tg(z) + a(1 - t)W(z) for t e [0, 1], z E P" 

for some nonzero parameter a E C. Obviously, 

,k'(z, t) = H(z, Xa(t)) 

with Aa(t) = (t, a(1 - t)), t E [0, 1]. An immediate consequence of this representa- 

tion and the results of the previous section is 

THEOREM 1. For almost each parameter a E C on the unit circle, there are D 
functions z '): [0, 1] -- P", continuous on [0, 1] and analytic on [0, 1), 1 = 1, 2,..., D, 

such that 
(a) { z?)(t): t = 1, 2,..., D } is the set of all solutions to 

-ye(z,t)=0 forte [0,1) 

and rank )j(zzd)(t), t) = n for 1 = 1, 2,.. ., D, t E [0, 1). 

(b) { z(')(1): I = 1, 2,. .., D } contains all isolated solutions of 

g(z) = 0. 

Proof. In order to apply the results of the previous section, we first prove that, for 
almost each a E C on the unit circle, AXa(t) 0 E for t E [0, 1); see Lemma 2. This is 
trivial for t = 0, since (0, 1) 0 E. For 0 < t < 1, we have DI(Xa(t)) = a(1 - t)/t E 

C; see Section 2. On the other hand, DJ(E) is a finite subset of C, say { e,, e2, .., eN)} 

For almost each a E C on the unit circle, namely for each a with arg(a) # arg(ei), 
i = 1, 2,..., N, we have DI(Aa(t)) 0 DJ(E) and therefore Aa(t) 0 E if 0 < t < 1. 
Now Lemma 2 and Lemma 1 directly imply the existence and analyticity of the 
functions z?) on [0, 1). For any 1 = 1, 2,..., D, there is at least one cluster point of 
z?')(t) as t approaches 1, since P" is a compact topological space. Assume that there 

is a second cluster point. Then, for some i = 0, 1, . . ., n, the function D, o z(? 
[0, 1) -* C" has two cluster points as t approaches 1. This- easily implies that there 
are infinitely many cluster points of D,(z(l)(t)) as t tends to 1, which contradicts 
Lemma 3. This shows that lim,-1 z?')(t) exists in P", which completes the proof. O 
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Theorem 1 shows that all isolated solutions to 9@(z) = 0 are obtained by following 
the solution paths z(/)(t), t E [0, 1] for / = 1, 2, .. ., D in pn. However, the actual 
computation does not take place in P'. One rather represents an element in P', i.e., 
a straight line through the origin in C"? , by some characteristic point on that line. 
This leads to 

THEOREM 2. Assume the notations and hypothesis of Theorem 1. For / E 

{1, 2, .. ., D } let a(/) E- Cnl be a nonzero point on z(/)(0) E pn. Then the initial 
value problem 

(4.1) 
H 

0(t J 

(O) =-a(/) 

(with -H = (j30, . .Y) Y7 being the complex conjugate to yi) has a unique 
solution j'): [0, 1] c-n 

+ 1, continuous on [0, 1] and analytic on [0, 1), which repre- 
sents z(l), i.e., y(j)(t) E Cn+1 is a nonzero point on the straight line z ' (t) E pn for 
eacht E [0,1]. 

Proof. It is easy to show that, for each t E [0, 1], a nonzero point x(l)(t) E cn+ 
on the line zM')(t) E pn can be selected such that the resulting function x(/): 
[0,1] -3 Cn+1 is continuous on [0, 1], analytic on [0, 1) and x(/)(0) = (/l): First one 
shows that such a selection function exists locally by working with a proper affine 
representation. Then these pieces are glued together. Now we consider the function 

()(t-) = p(l)(t) x(l)(t) with 

p(')(t) = exp(-|f (x(l)(s), X(t)(s))/Ax(1)(s), x(l)(s)) ds) (Ky, z) = yHz) . 

Observe,that p(l)(1) exists, although x(/)(s) may diverge for s -* 1. (From Wainberg 
and Trenogin [17, p. 75] it follows that x(')(s) = qg()((1 - 5)1/m()), with some 
analytic mapping (p(') and a positive integer m(l), in some neighborhood of s = 1. 
This ensures the existence of the integral at t = 1.) Easy calculations show that j') 
satisfies (4.1). To show that the solution of (4.1) is unique, it suffices to prove the 
regularity of the matrix in (4.1). Assume that, for fixed t E [0, 1), 

Xx(6(l')(t), t)v 0, 3(l)(t)Hv 0 

with v E C n+. Euler's differential equation for the componentwise homogeneous 
mapping X, 

Ae(Z, t)z = diag(dl, d2,. .., dn)AY'(z, t) at z =- (t), 

and the condition rank X('(t)(t) = n, see Theorem l(a), imply that the null 
space of X(j')(t), t) is the one-dimensional subspace of Cn+1 spanned by'()(t). 

Hence, v = pY(l)(t), p E C. With jI1))(t)Hv- pII<v'(t)112 = 0, it follows that 
p = 0 and finally v = 0, which shows the regularity of the matrix in (4.1). This 
completes the proof. El 

Remark. The scaling condition u(t)'fu,(t) = 0 is essentially the same condition as 
used in Brunovsky and Meravy [2]. 
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Theorem 2 reduces the problem of finding all isolated zeros of 9 to the numerical 
integration of the initial value problem (4.1) for D different initial values. In the next 
section a few numerical experiments on this are described. 

5. Numerical Experiments. In principle, any efficient and reliable path following 
algorithm for solving (4.1) can be used; see, e.g., the review article by Allgower and 
Georg [1]. For no particular reason we chose the well-known Euler-predictor 
Newton-corrector algorithm. All computations were performed on an IBM 4341 
computer in double precision. The algorithm stops at a solution z(k) E Cn + with 

1IZ(k)11 = 1 if 

either || g( Z(k)) 1 10-10 or I IZ(k) - Z(k-1) 11 < 10, 

where z(k) and z(k -1) denote the two last iterates of Newton's method for (2.1). 
In order to test the influence of the auxiliary parameter a, we considered 
Problem 1 (see Wright [18]): 

(Z1 - z- z) = 0, z - Z2 = 0. 

Solutions: 

A1 = A2 = (0, 1, 1) (improper zero of multiplicity 2), 

B1 = B2 = (1, -, 2) (proper zero of multiplicity 2). 

This simple system was solved for different values of a on the unit circle in C, using 
(1.7) as starting problem. 

Theoretically, only 8 values of a E C on the unit circle (marked by crosses on the 
arg(a)-axis in Figure 1) lead to nonregular solution paths. As expected, the method 
also fails to work if a E C is sufficiently close to one of those 8 values. For 86 
percent of the unit circle the method produces all 4 solutions. On the rest of the unit 
circle only two or three solutions are obtained. The diagram of Figure 1 shows the 
computational cost versus the auxiliary parameter for each of the 4 solutions. The 
computational cost is measured in terms of Jacobian evaluations, N, of X' and the 
parameter a E C on the unit circle is identified by its angle arg(a). 

If, as usually suggested, the problem is run with a randomly chosen auxiliary 
parameter, an average of 94 Jacobian evaluations is needed to compute all four 
solutions. (A standard random number generator was used and the average was 
taken over 100 runs.) For 15 percent of the runs the method failed to produce all 
zeros. This high failure rate is due to the rather optimistic step length strategy, which 
decreases the computational cost but also increases the probability for jumping from 
one path to another near the 8 marked values of arg(a), where two paths almost 
touch. If some internal parameters of the path following algorithm are decreased by 
a factor 0.1, which forces the algorithm to follow the paths more closely, the method 
works for a E C on more than 99.9 percent of the unit circle. However, the 
computational cost increases. 

Remark. Although the problem has only two different solutions, they are ap- 
proached by four different solution paths. This makes it possible to decide whether 
all "four" zeros are obtained or some zero is "lost" by jumping to another path. 
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improper zero A1 = (0,1,1) improper zero A2 = (0,1,1) 
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0 arg(a) 02 arg(a) 2rr 

proper zero B1 = (1,0.5,-0.5) proper zero B2 = (1,0.5,-0.5) 

FIGURE 1 

Increasing computational cost near 8 auxiliary parameters a E C (marked by x). 

The second test problem. 
Problem 2 (see Kojima and Mizuno [10], Wright [18]): 

5 

2+ L zz1 - 2z0z1 - Cz2 = 0 for j = 1, 2,..., 5 

with C = 10, 4.1 or 4 gives some indication on the importance of the starting 
problem W(z) = 0. For C = 10 and C = 4.1 the system has 32 zeros of multiplicity 
1, for C = 4 there is one zero of multiplicity 16 and 16 zeros of multiplicity 1. As 
mentioned before, a starting system M(z) = 0 can be obtained by splitting 9, e.g., 
there is always an "artificial" splitting with R given by (1.7), no matter how 9 
looks like. For Problem 2 this leads to the starting system 

(RI) z2 _ z 2 = 0 for j = 1, 2,..., 5. 

On the other hand, the polynomials 9, of Problem 2 "naturally" split into terms in 

z, and z( only and the rest of ?1/X. Then the starting problem becomes 

(R2) Z 2 _ Z(Z - CZ2 = O for j = 1, 2,.. ., 5. 

Table 1 shows that the total number N of Jacobian evaluations is considerably 
smaller for the "natural" splitting (a E C randomly chosen on the unit circle). 
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TABLE 1 

Computational cost for different starting problems. 

N C= 10 C= 4.1 C= 4 

(RI) 462 383 485 
(R2) 155 257 367 

This is no proof that, in general, the natural splitting (whatever this means) is better 
than an "artificial" splitting. But at least this test problem shows that flexibility with 
respect to the starting problem is a desirable feature of a homotopy method, a fact 
that has not been appreciated in previous papers, except in Drexler [4], [5]. 

Appendix. This section contains sketches of the proofs for Lemma 2 and Lemma 
3, using algebraic-geometric arguments. 

Solution sets in pn to systems of homogeneous polynomials in z = (z0, z1,..., Z,7) 

are called closed algebraic sets in pn. Solution sets in pn X pl to systems of 
polynomials in (z, X) = (z0, zl, .., I,Zn, X0,X1), homogeneous in z and in X, are 
called closed algebraic sets in pn X pl. 

Example. X is a closed algebraic set in pn X pl, X. is a closed algebraic set in P' 
for each X Ee Pl. 

If a closed algebraic set is irreducible, i.e., it is not the union of two proper closed 
algebraic subsets, then it is said to be a variety. Each closed algebraic set is a finite 
union of varieties which are called the components of the closed algebraic set (see 
Mumford [16, p. 22 and Proposition (2.12)]). 

The natural projection P2 of a variety in P'7 X P1 onto the second factor P1 is a 
variety in Pl (see Mumford [16, Main Theorem of elimination theory (2.23)]). The 
only varieties in Pl are the empty set, the one-element subsets and Pl itself (which 
follows from the fundamental theorem of algebra). 

Proof of Lemma 2. Those components of X whose projection onto Pl is Pl are 
denoted by Y', i = 1,2, . r; for the rest we write Z', i = 1,2, . s. Then we have 

r s 

X = YU Z with Y = U Y'and Z= U Z. 
1=1 1=1 

Obviously, P2(Z) is a finite subset of P1, and 

XX = Yx 

for X X p2(Z), where Yx = {z E Pt': (z, X) E Y}. 

Let Y' be any component of X with p2(Y') = Pl. Y' must contain a point of the 
form (z(, (0, 1)) E Pt' X P1, with z( being a simple zero of M. Condition (A), see 
Section 1, guarantees that (z?, (0, 1)) is a regular point. Then by Lemma 1 it follows 
that dim Y' = 1 (for the concept of dimension see Mumford [16]). 

Next, consider the subset sing(Y') c Y' of nonregular points in Y'. sing(Y') is a 
proper closed algebraic subset of Y' because (2, (0, 1)) 0 sing(Y') and nonregular- 
ity can be described in terms of vanishing subdeterminants of 3-(z, A) which lead 
to polynomial equations. It is known that the dimension of a proper closed algebraic 
subset of a variety is smaller than the dimension of that variety (see Mumford [16, 
Proposition (1.14)]). Therefore, dimsing(Y') < 1, which means that sing(Y') is 
finite. Consequently, sing(Y) = Ur=1 sing(Y') is finite and the projection p2(sing(Y)) 
is also finite. 
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So, finally, we have that, for X ( p2(sing(Y)) U p2(Z) = E, XX = Yx consists of 
only regular points. In particular, Condition (A) implies that X(0o1) is a set of exactly 
D distinct points. Lemma 1 and a simple continuity argument show that X> also 
consists of exactly D distinct points as long as X 0 E. This completes the proof of 
Lemma 2. cl 

Proof of Lemma 3. Observe that 
lim Xx c Y10 

X*(1,O) 

because Xx = Yx for each X # (1, 0) in some neighborhood of (1, 0) E Pl, see proof 
of Lemma 2, and Y is closed in the natural topology of P' x Pl. 

The closed algebraic set X c P' x Pl is defined as the solution set of n 
polynomials. Hence, each component of X is at least one-dimensional, see Kendig 
[9, Theorem IV.2.23 and Theorem IV.3.8]. In particular, dim Zi > 1. Since p2(Zi) is 
a one-element subset of Pl, dim Z. = dim Zi > 1 or Z'. is empty for X E Pl. This 
implies that the variety Z(10) cannot contain an isolated point. Thus the isolated 
zeros of bA lie in Y(1,0). The rest of Lemma 3 follows by simple continuity arguments. 
This completes the proof of Lemma 3. f1 
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